Что такое процессор компьютера? Как работает процессор Что обрабатывает процессор

Для того чтобы понять, как работает микропроцессор, зададим себе во­прос - а как он должен работать? Есть теория (в основном созданная пост­фактум: после того, как первые ЭВМ были уже построены и функционирова­ли), которая указывает, как именно строить алгоритмы, и что процессор в соответствии с этим должен делать. Мы, естественно, углубляться в это не будем, просто констатируем, что любой алгоритм есть последовательность неких действий, записанных в виде набора последовательно выполняемых команд (инструкций, операторов). При этом среди таких команд могут встре­чаться команды перехода, которые в некоторых случаях нарушают исходную последовательность выполнения операторов строго друг за другом. Среди прочих должны быть также команды ввода и вывода данных (программа должна как-то общаться с внешним миром?), а также команды выполнения арифметических и логических операций.

Команды должны где-то храниться, поэтому неотъемлемой частью всей сис­темы должно быть устройство памяти программ. Где-то надо складывать и данные, как исходные, так и результаты работы программы, поэтому должно быть устройство памяти данных. Так как команды и данные, в конечном сче­те, все равно есть числа, то память может быть общая, только надо уметь от­личать, где именно у нас команды, а где - данные. Это есть один из прин­ципов фон Неймана, хотя и в микроконтроллерах, о которых мы будем говорить в дальнейшем, традиционно используют не фон-неймановскую, а так называемую гарвардскую архитектуру, когда память данных и программ разделены (это разделение, впрочем, может в определенных пределах нару­шаться). Процессор, построенный по фон Нейману, более универсален, на­пример, он позволяет без особых проблем наращивать память, строить ее ие­рархически и более эффективно ее перераспределять прямо по ходу работы. Например, в системе Windows всегда предполагается, что компьютер имеет практически неограниченный объем памяти (измеряемый в терабайтах), а если ее реально не хватает, к делу подключается своп-файл на жестком дис­ке. В то же время микроконтроллерам подобная гибкость не особенно требу­ется - на их основе, как правило, строятся узлы, выполняющие конкретную задачу и работающие по конкретной программе, так что нужную конфигура­цию системы ничего не стоит предусмотреть заранее.

МП и МК

Кстати, а почему мы все время говорим то микропроцессоры (МП), то микро­контроллеры (МК)? Микроконтроллер отличается от микропроцессора тем, что он предназначен для управления другими устройствами, и поэтому имеет встроенную развитую систему ввода-вывода, но, как правило, относительно более слабое АЛУ. Микроконтроллерам очень хорошо подходит термин, кото­рый в советское время имел, правда, несколько иное значение- «микро-ЭВМ», еще точнее звучит английское «computer-on-chip», однокристальный компьютер. В самом деле, для построения простейшего вычислительного уст­ройства, которое могло бы выполнять что-то полезное, обычный микропроцес­сор, от i4004 до Pentium и Core Duo, приходится дополнять памятью, ПЗУ с за­писанной BIOS, устройствами ввода-вывода, контроллером прерываний, тактовым генератором с таймерами и т. п. - всем тем, что сейчас стало объе­диняться в т. н. «чипсеты». «Голый» МП способен только одно: правильно включиться, ему даже программу загрузки неоткуда взять.

В то же время для МК микропроцессор - это только ядро, даже не самая большая часть кристалла. Для построения законченной системы на типовом МК не требуется вообще ничего, кроме источника питания и периферийных исполняющих устройств, которые позволяли бы человеку определить, что сис­тема работает. Обычный МК может без дополнительных компонентов общать­ся с другими МК, внешней памятью, специальными микросхемами (вроде ча­сов реального времени или флэш-памяти), управлять небольшими (а иногда - и большими) матричными панелями, к нему можно напрямую подключать дат­чики физических величин (в том числе - чисто аналоговые, АЦП тоже часто входят в МК), кнопки, клавиатуры, светодиоды и индикаторы, короче- в микроконтроллерах сделано все, чтобы приходилось как можно меньше паять и задумываться над подбором элементов. За это приходится расплачиваться пониженным быстродействием (которое, впрочем, не так-то уж и важно в ти­повых задачах для МК) и некоторым ограничением в отдельных функциях - по сравнению с универсальными, но в сотни раз более дорогими и фомоздки-ми системами на «настоящих» МП. Вы можете мне не поверить, но процессо­ры для персональных компьютеров (ПК), о которых мы столько слышим, за­нимают в общем количестве выпускаемых процессоров лишь 5-6% - остальные составляют микроконтроллеры различного назначения.

В соответствии со сказанным основной цикл работы процессора должен быть таким: выборка очередной команды (из памяти), если необходимо - выбор­ка исходных данных для нее, выполнение команды, размещение результатов в памяти (опять же если это необходимо). Вся работа в этом цикле должна происходить автоматически па командам некоторого устройства управления, содержащего тактовый генератор - системные часы, по которым все син­хронизируется. Кроме того, где-то это все должно происходить - складиро­вание данных, кода команды, выполнение действий и т. п., так что процессор должен содержать некий набор рабочих регистров (по сути - небольшую по объему сверхбыструю память), определенным образом связанных как между собой, так и с устройством управления и АЛУ, которое неизбежно должно присутствовать.

Решающую роль в работе процессора играет счетчик команд. Он автоматиче­ски устанавливается на нуль в начале работы, что соответствует первой ко­манде, и автоматически же инкрементируется (то есть увеличивается на еди­ницу) с каждой выполненной командой. Если по ходу дела порядок команд нарушается, например, встречается команда перехода (ветвления), то в счет­чик загружается соответствующий адрес команды - ее номер от начала про­граммы. Если это не просто ветвление, а выполнение подпрограммы, которое предполагает в дальнейшем возврат к основной последовательности команд (к следующей команде после вызова подпрограммы), то перед переходом к выполнению подпрограммы текущее значение счётчика команд сохраняется в специально отведенной для этой цели области памяти - стеке. По команде окончания подпрограммы сохраненный адрес извлекается из стека, и выпол­нение основной программы продолжается. К счастью, нам самим не придется иметь дело со счетчиком команд, потому что все указания на этот счет со­держатся в командах, и процессор все делает автоматически.

Рис. 18.2. Блок-схема простейшего микроконтроллера

Блок-схема простейшего МК, содержащего процессорное ядро и минимум компонентов для «общения» с внешней средой, показана на рис. 18.2. Здесь мы включили в состав системы память программ, которая у ПК-процессоров находится всегда отдельно (если не считать относительно небольшого объе­ма быстродействующей кэш-памяти) - сами знаете, какой объем программ бывает в персональных компьютерах. В большинстве современных микро­контроллеров постоянное запоминающее устройство (ПЗУ) для программ входит в состав чипа и обычно составляет от V-2 до 8-32 кбайт. Хотя есть модели и с 256 килобайтами встроенной памяти, но 2-8 кбайт для подав­ляющего большинства применений вполне достаточно. Встроенное опера­тивное запоминающее устройство (ОЗУ) для хранения данных в том или ином объеме также имеется во всех современных микроконтроллерах, ти­пичный размер такого ОЗУ - от 128-256 байт до 1-4 кбайт. В большинст­ве универсальных контроллеров есть и некоторое количество встроенной энергонезависимой памяти для хранения констант- обычно столько же, сколько и ОЗУ данных. Но к памяти мы еще вернемся в этой главе, а пока продолжим про процессоры.

Подробности

в первых моделях микропроцессоров (включая и интеловские процессоры для ПК - от 8086 до 80386) процессор выполнял команды строго последователь­но: загрузить команду, определить, что ей нужны операнды, загрузить эти опе­ранды (по адресу регистров, которые их должны содержать; адреса эти, как правило, хранятся сразу после собственно кода команды или определены за­ранее), потом проделать нужные действия, складировать результаты… До на­шего времени дошла архитектура суперпопулярных еще недавно микрокон­троллеров 8051, выпускающихся и по сей день различными фирмами (Atnnel, Philips), которые выполняли одну команду аж за 12 тактов (в некоторых совре­менных аналогах, впрочем, это число меньше). Для ускорения работы стали делить такты на части (например, срабатывать по переднему и заднему фрон­там), но действительный прорыв произошел с внедрением конвейера. Со вре­мен Генри Форда известно, что производительность конвейера зависит только от времени выполнения самой длинной операции - если поделить команды на этапы и выполнять их одновременно разными аппаратными узлами, то можно добиться существенного ускорения (хотя и не во всех случаях). В рас­сматриваемых далее микроконтроллерах Atmel AVR конвейер двухступенча­тый: когда очередная команда загружается и декодируется, предыдущая уже выполняется и пишет результаты. В AVR это позволило выполнять большин­ство команд за один такт (кроме команд ветвления программы).

Главное устройство в МП, которое связывает все узлы в единую систему - внутренняя шина данных. По ней все устройства обмениваются сигналами. Например, если МП требуется обратиться к внешней, дополнительной памя­ти, то при исполнении соответствующей команды на шину данных выставля­ется нужный адрес, от устройства управления поступает через нее же запрос на обращение к нужным портам ввода/вывода. Если порты готовы, адрес по­ступает на выходы портов (то есть на соответствующие выводы контролле­ра), затем по готовности принимающий порт выставляет на шину принятые из внешней памяти данные, которые загружаются в нужный регистр, после чего шина данных свободна. Для того чтобы все устройства не мешали друг другу, все это строго синхронизировано, при этом каждое устройство имеет, во-первых, собственный адрес, во-вторых, может находиться в трех состоя­ниях - работать на ввод, на вывод или находиться в третьем состоянии, не мешая другим работать.

Под разрядностью МП обычно понимают разрядность чисел, с которыми ра­ботает АЛУ, соответственно, такую же разрядность имеют и рабочие регист­ры. Например, все ПК-процессоры от 1386 до последних инкарнаций Pentkim были 32-разрядными, некоторые последние модели от Intel и AMD стали 64-разрядными. Большинство микроконтроллеров общего назначения- 8-раз­рядные, но есть и 16-, и 32-разрядные. При этом внутренняя шина данных может иметь и больше разрядов - например, чтобы одновременно переда­вать и адреса и данные.

Распределение рынка МК в первые годы тысячелетия было таким: немного меньше половины выпускаемых изделий составляют 8-разрядные кристаллы, а вторую половину поделили между собой 16- и 32-разрядные, причем доля последних неуклонно растет за счет 16-разрядных. Выпускаются даже 4-разрядные, потомки первого 14004, которые занимают не более 10% рынка, но, что любопытно, эта доля снижается очень медленно.

Заметки на полях

Обычно тактовая частота универсальных МК невелика (хотя инженеру 1980-х, когда ПК работали* на частотах не выше 6 МГц, она показалась бы огром­ной) - порядка 8-16 МГц, иногда до 20 МГц или несколько более. И это всех устраивает - дело в том, что обычные МК и не предназначены для разработ­ки быстродействующих схем. Если требуется быстродействие, то использует­ся другой класс интегральных схем - ПЛИС, «профаммируемые логические интефальные схемы». Простейшая ПЛИС представляет собой набор никак не связанных ме>кду собой логических элементов (наиболее сложные из них мо­гут включать в себя и некоторые законченные узлы, вроде триггеров и генера­торов), которые в процессе программирования такого чипа соединяются в нуж1|1ую схему. Комбинационная логика работает гораздо быстрее тактируемых контроллеров, и для построения различных логических схем в настоящее вре­мя применяют только ПЛИС, от использования дискретных элементов («рас-сыпухи») в массовых масштабах уже давно отказались. Еще одно преимуще­ство ПЛИС- статическое потребление энергии для некоторых серий составляет единицы микроватт, в отличие от МК, которые во включенном со­стоянии потребляют достаточно много (если не находятся в режиме энерго­сбережения). В совокупности с более универсальными и значительно более простыми в обращении, но менее быстрыми и экономичными микроконтролле­рами, ПЛИС составляют основу большин9твд массовых электронных изделий, которые вы видите на прилавках. В этой книге мы, конечно, рассматривать ПЛИС не будем - в любительской практике, в основном из-за дороговизны соответствующего инструментария и высо1кого порога его освоения, они не ис­пользуются, и для конструирования oди^|oчныx экземпляров приборов даже для профессиональных применений их ис111ользовать нецелесообразно.

Если подробности внутреннего функционирования МП нас волнуют не очень (центральный узел - АЛУ мы уже «изобретали» в главе 15, и этого доста­точно, чтобы понимать, что именно происходит внутри процессорного ядра), то обмен с внешней средой нас как раз интересует во всех деталях. Для этого служат порты ввода/вывода (I/0-port, от input/output). В этом термине имеет­ся некоторая неопределенность, так как те, кто программировал для ПК на ассемблере, помнят, что в ПК портами ввода/вывода (ПВВ) назывались реги­стры для управления всеми устройствами, кроме непосредственно процес­сорного ядра. В микроконтроллерах то же самое называют «регистрами вво­да/вывода» (РВВ) - это регистры для доступа ко встроенным компонентам контроллера, внешним по отношению к вычислительному ядру. А это все узлы, которыми непосредственно управляет пользователь - от таймеров и последовательных портов до регистра флагов и управления прерываниями. Кроме ОЗУ, доступ к которому обеспечивается специальными командами, все остальное в контроллере управляется через РВВ, и путать с портами вво­да-вывода их не следует.

ПВВ в МК служат для обмена с «окружающей средой» (управляются они, естественно, тоже внутренними регистрами ввода-вывода). На схеме рис. 18.2 показано 3 ПВВ - А, В и С; в реальных МК их может быть и боль­ше, и меньше. Еще важнее число выводов этих портов, которое чаще всего совпадает с разрядностью процессора (но не всегда, как это было у 8086, ко­торый имел внутреннюю 16-разрядную структуру, а внешне выглядел 8-разрядным). Если мы заставим 8-разрядные порты «общаться», например, с внешней памятью, то на двух из них можно выставить 16-разрядный адрес, а на оставшемся - принимать данные. А как быть, если портов два или вооб­ще один? (К примеру, в микроконтроллере АТхххх2313 портов формально два, но один усеченный, так что общее число линий составляет 15). Для того чтобы даже в такой ситуации это было возможно, все внешние порты в МП всегда двунаправленные. Скажем, если портов два, то можно сначала выста­вить адрес, а затем переключить порты на вход и принимать данные. Естест­венно, для этого порты должны позволять работу на общую шину - то есть либо иметь третье состояние, либо выход с общим коллектором для объеди­нения в «монтажное ИЛИ».

Варианты для обоих случаев организации выходной линии порта показаны на рис. 18.3, где приведены упрощенные схемы выходных линий микрокон­троллеров семейства 8048 - когда-то широко использовавшегося предшест­венника популярного МК 80S1 (например, 8048 был выбран в качестве кон­троллера клавиатуры в IBM PC). В современных МК построение портов несколько сложнее (в частности, вместо резистора там полевой транзистор), но для уяснения принципов работы это несущественно.

По первому варианту (рис. 18.3, а) в МК 8048 построены порты 1 и 2. Когда в порт производится запись, то логический уровень поступает с прямого выхо­да защелки на статическом D-триггере на вход схемы «И», а с инверсного - на затвор транзистора VT2. Если этот уровень равен логическому нулю, то транзистор VT1 заперт, а VT2 открыт, на выходе также логический ноль. Ес­ли уровень равен логической единице, то на время действия импульса «За­пись» транзистор VT1 открывается, а транзистор VT2 запирается (они одина­ковой полярности). Если на выходе присутствует емкость (а она всегда имеется в виде распределенной емкости проводников и емкости входов дру­гих компонентов), то через открытый VT1 протекает достаточно большой ток заряда этой емкости, позволяющий сформировать хороший фронт перехода из О в 1. Как только импульс «Запись» заканчивается, оба транзистора от­ключаются, и логическая единица на выходе поддерживается резистором R1. Выходное сопротивление открытого транзистора VT1 примерно 5 кОм, а ре­зистора - 50 кОм. Любое другое устройство, подключенное к этой шине, при работе на выход может лишь либо поддержать логическую единицу, включив свой подобный резистор параллельно R1, либо занять линию своим логическим нулем - это, как видите, и есть схема «монтажное ИЛИ». При работе на вход состояние линии просто считывается во время действия им­пульса «Запись» со входного буфера (элемент «В» на рис. 18.3, а).

Второй вариант (рис. 18.3, б), по которому устроен порт О, есть обычный вы­ходной каскад КМОП с третьим состоянием, то есть такой порт может рабо­тать на выход, только полностью занимай линию, остальные подключенные к линии устройства при этом должны смиренно внимать монополисту, воспри­нимая сигналы. Это обычно не создает особых трудностей и схемотехниче­ски даже предпочтительно ввиду симметрии выходных сигналов и высокого сопротивления для входных. Единственная сложность возникает при сопря­жении такого порта с линией, работающей по первому варианту, так как при логической единице на выходе могут возникнуть электрические конфликты, если кто-то попытается выдать в линию логический ноль (ток от источника пойдет через два распахнутых транзистора).

Рис. 18.3. Упрощенные схемы портов ввода/вывода МК 8048: а - портов 1 и 2; б - порта О

Для обеспечения работы трехстабильного порта по схеме «монтажное ИЛИ» применяют хитрый прием: всю линию «подтягивают» к напряжению питания с помощью внешнего резистора (во многих МК существует встроенный от­ключаемый резистор, установленный аналогично R1 в схеме рис. 18.3, а), и нормальное состояние всех участвующих трехстабильных портов - работа на вход в третьем состоянии. В этом режиме на линии всегда будет логиче­ская единица. На выход же линию переключают только, когда надо выдать логический ноль. В этом случае, даже при одновременной активности не­скольких портов, конфликтов не возникнет.

Процессор компьютера – это основной компонент компьютера, его «мозг», скажем так. Он выполняет все логические и арифметические операции, которые задает программа. Кроме этого он выполняет управление всеми устройствами компьютера.

Что собою представляет современный процессор

Сегодня процессоры изготавливаются в виде микропроцессоров. Визуально микропроцессор – это тонкая пластинка кристаллического кремния в форме прямоугольника. Площадь пластины несколько квадратных миллиметров, на ней расположены схемы, которые обеспечивают функциональность процессора ПК. Как правило, пластинка защищена керамическим или пластмассовым плоским корпусом, к которому подсоединена посредством золотых проводков с металлическими наконечниками. Такая конструкция позволяет подсоединить процессор к системной плате компьютера.

  • шины адресов и шины данных;
  • арифметико-логическое устройство;
  • регистры;
  • кэш (быстрая память небольшого объема 8-512 Кбайт);
  • счетчики команд;
  • математический сопроцессор.

Что такое архитектура процессора?

Архитектура процессора – это способность процессора выполнять набор машинных кодов. Это с точки зрения программистов. Но разработчики компьютерных составляющих придерживаются другой трактовки понятия «архитектура процессора». По их мнению, архитектура процессора – это отражение основных принципов внутренней организации определенных типов процессоров. Допустим, архитектура Intel Pentium обозначается Р5, Pentium II и Pentium III — Р6, а не так давно популярных Pentium 4 – NetBurst. Когда компания Intel закрыла Р5 для конкурирующих производителей, компания AMD разработала свою архитектуру К7 для Athlon и Athlon XP, а для Athlon 64 – К8.

Даже процессоры с одинаковой архитектурой могут существенно отличаться друг от друга. Эти различия обусловлены разнообразием процессорных ядер, которые обладают определенным набором характеристик. Наиболее частым отличием является различные частоты системной шины, а также размеры кэша второго уровня и технологическим характеристикам, по которым изготовлены процессоры. Очень часто смена ядра в процессорах из одного и того же семейства, требует также замены процессорного разъема. А это влечет за собой проблемы с совместимостью материнских плат. Но производители постоянно совершенствуют ядра и вносят постоянные, но не значительные изменения в ядре. Такие нововведения называют ревизией ядер и, как правило, обозначаются цифробуквенными комбинациями.

Системная шина или процессорная шина (FSB – Front Side Bus) – это совокупность сигнальных линий, которые объединены по назначению (адреса, данные и т.д.). Каждая линия имеет определенный протокол передачи информации и электрическую характеристику. То есть системная шина – это связующее звено, которое соединяет сам процессор и все остальные устройства ПК (жесткий диск, видеокарта, память и многое другое). К самой системной шине подключается только CPU, все остальные устройства подключаются через контроллеры, которые находятся в северном мосте набора системной логики (чипсет) материнской платы. Хотя в некоторых процессорах контролер памяти подключен непосредственно в процессор, что обеспечивает более эффективный интерфейс памяти CPU.

Кеш или быстрая память – это обязательная составляющая всех современных процессоров. Кеш является буфером между процессором и контроллером достаточно медленной системной памяти. В буфере хранятся блоки данных, отрабатываемых в данный момент, и процессору не нужно постоянно обращаться к медленной системной памяти. Естественно, это значительно увеличивает общую производительность самого процессора.

В процессорах, используемых сегодня, кэш поделен на несколько уровней. Самый быстрый – первый уровень L1, который производит работу с ядром процессора. Он обычно разделен на две части – это кэш данных и кэш инструкций. С L1 взаимодействует L2 – кэш второго уровня. Он намного больше по объему и не разделен на кэш инструкций и кэш данных. У некоторых процессоров существует L3 – третий уровень, он еще больше второго уровня, но на порядок медленнее, так как шина между вторым и третьим уровнем уже, чем между первым и вторым. Тем не менее, скорость третьего уровня все равно гораздо выше, нежели скорость системной памяти.

Различают кэш по двум видам – эксклюзивный и не эксклюзивный.

Эксклюзивный тип кэша тот, в котором информация на всех уровнях строго разграничена на оригинальную.

Не эксклюзивный кэш – это кэш, в котором информация повторяется на всех уровнях кэша. Трудно сказать, какой тип кэша лучше, и у первого и у второго есть свои достоинства и недостатки. Эксклюзивный тип кэша используется в процессорах AMD, а не эксклюзивный — Intel.

Разъем процессора может быть щелевой и гнездовой. В любом случае его предназначение – это установка центрального процессора. Применение разъема облегчает замену процессора при модернизации и снятие на время ремонта ПК. Разъемы могут предназначаться для установки CPU-карты и самого процессора. Разъемы различают по предназначению для определенных типов процессоров или CPU-карт.

Первое место занимает процессор Intel Core i5. Отличный вариант для мощной игровой машины.

Второе место — Intel Celeron E3200, не смотря на достаточно приличную стоимость. Оптимальный вариант для офисной машины.

Третье место занимает снова intel - на этот раз 4-х ядерный Core 2 Quad.

Четвертое место — процессор AMD Athlon II X2 215 2.7 GHz 1Mb Socket-AM3 OEM. Хороший выбор для дома и офиса, для тех кто хочет сэкономить и не нуждается в супер мощной машине. К тому у этой модели процессора есть много места для разгона.

Пятое место — AMD Phenom II X4 945. Хорошая цена, отличная производительность, большой кэш и 4 ядра на борту.

Если вы готовы заплатить за процессор порядка 1000$, то можете приобрести Intel Сore 2 Extreme. Но такой процессор вряд ли подойдет для широких масс потребителей. Поэтому рассмотрим более доступные варианты.

Если вы простой пользователь ПК, который работает с текстами, смотрит фильмы, прослушивает музыку и работает в Интернете, вам вполне подойдет или Celeron E1200 или младшие Athlon 64 X2. Последний имеет определенные преимущества перед первым и вам его хватит на долгие годы.

Если вы используете свой компьютер для развлечения, периодически играете в игры, то вам нужно посмотреть на процессоры Core 2 Duo. Это самый оптимальный вариант процессора для ваших потребностей.

Если вы относитесь к пользователям, которые используют все возможности компьютера, работаете с аудио, Интернет, видео, большими программами и тяжеловесными играми, вам больше всего подойдет Core 2 Duo E8200. Этот процессор обладает высокой производительностью, невысоким тепловыделением, достаточной возможностью разгона, при этом доступен по цене.

И, наконец, вы бескомпромиссный игрок и ваш ПК должен быть мощным игровым плацдармом? Вам просто необходим или двухядерный или четырехядерный процессор, не меньше.

Сегодня практически в каждом доме есть компьютер. Без него трудно представить сегодняшнюю жизнь. Поиск необходимой информации, просмотр новостей и погоды, покупка-продажа товаров, просмотр фильмов и передач – все это возможно сделать, не выходя из дома и не прилагая особых усилий. Всего лишь необходимо включить компьютер и зайти в Интернет.

Но мало кто задумывается о том, из чего состоит компьютер, при помощи чего можно так быстро получать всю необходимую информацию. Одной из основных составляющих компьютера является процессор. Разобравшись, как работает процессор, можно прояснить для себя много нового.

Что такое процессор

Центральный процессор, или как его называют в мире информатики – CPU – это основная составляющая любого компьютера, это его сердце и мозг. Именно процессор выполняет все команды, указанные пользователем, обрабатывает всю информацию и управляет иными приборами компьютера.

Сегодня основными производителями процессоров являются компании Intel и Advanced Micro Devices (AMD), которые длительное время существуют на рынке информационных технологий и проявили себя только с лучшей стороны. Естественно, существуют и иные производители, но до уровня этих компаний-гигантов им еще очень далеко. Интересно, что Intel и AMD ведут постоянную борьбу за первенство в произведении процессоров, поочередно завоевывая первые позиции при выпуске новых моделей. Как ни странно, именно эта борьба дает толчок постоянному качественному развитию этой области информационных технологий.

Внешний вид

Начинать осматривать устройство процессора компьютера необходимо с его внешнего вида. На первый взгляд, это просто металлическая коробочка, с обратной стороны которой находится небольшая плата размером приблизительно 5х5 см и различные контакты, при помощи которых процессор крепится к материнской плате. В средине процессора находятся миллионы, а иногда даже и миллиарды различных транзисторов, которые и выполняют основную работу.

Из чего делается процессор

Сам процессор в основном состоит из песка, а точнее – кремния, которого в земной коре всего лишь 30%. Процесс образования процессоров достаточно сложный, требует специального оборудования и материальных затрат. Если кратко, схема изготовления процессоров чем-то схожа с технологией печати фотографий - при его изготовлении используется технология фотолитографии. В роли фотографии тут выступают «блинчики» - будущие процессоры, на которых при помощи сильно разогнанных на специальном ускорителе ионов бора создают миниатюрную структуру с множеством транзисторов. И чем тоньше технологический процесс, тем больше мощность и скорость работы данной структуры. С каждым годом размеры этих структурных элементов все меньше и в скором времени, по прогнозам ученых, они могут достигать всего лишь около 15 нм.

Можно снять крышку и рассмотреть внутреннее устройство процессора, но тут существует риск повреждения тончайших деталей процессора, что может привести к его неработоспособности.

Составляющие

С течением времени устройство и работа процессора качественно изменяются. Уменьшаются и размеры процессоров. Сегодня используются практически те же принципы построения процессоров, что и раньше, изменился только размер комплектующих.

Внутри устройство процессора также весьма интересно. Он состоит из общей архитектуры – все, что включает в себя плату, ядра (от работы которых зависит быстродействие компьютера), шины (крепления, которые подсоединяются к материнской плате), а также ревизии (частицы, которые меньше, нежели ядра, но также очень важны и функциональны).

Показатели быстродействия компьютера

Реакция компьютера на заданные команды может зависеть от нескольких показателей: от количества ядер, количества потоков (может не совпадать с количеством ядер), размеров кеша – внутренней памяти процессора, тактовой частоты, быстроты шин, а также самого техпроцесса изготовления процессора.

Принцип работы

Детально изучив устройство, теперь можно рассмотреть принцип работы процессора. Компьютер начинает свою работу после получения определенной команды от пользователя.

Но мало кто знает, что любая команда состоит из двух частей – операционной и операндной:

  • операционная часть команды показывает то, что должен выполнить компьютер,
  • вторая часть команды дает процессору операнды – то, над чем должен поработать процессор.

Некоторые процессоры могут содержать два конвейера, т.е. вычислительных блока. Каждый из них разделяет выполнение команды, данной компьютеру пользователем, на несколько этапов: выработку, декодирование (т.е. дешифровку команды), выполнение самой команды, обращение к памяти процессора и запоминание полученных результатов. Все эти этапы делаются в кратчайшие сроки. При работе конвейера каждому его этапу отводиться один такт одноименной частоты, поэтому выполнению каждой команды в процессоре отводиться пять тактов.

Кеширование памяти любого процессора увеличивает его работоспособность. Сегодня принято использовать две кеш-памяти, т.к. использование одной приводило к конфликтам при выполнении команд. Это связано с тем, что часто две команды пытались взять информацию из одной кеш-памяти. Раздельное кеширование полностью исключает возникновение подобных ситуаций и дает возможность двум командам быть выполненными одновременно.

Разбираясь, как работает процессор компьютера, стоит учесть и то, что вычислительные процессоры бывают разные: линейные, циклические и разветвляющиеся.

  • Линейные процессоры выполняют команды в зависимости от порядка их записи в оперативной памяти.
  • Циклические и разветвляющие процессоры выполняют команды в зависимости от результатов проверки условий ветвлений.

Важно также знать, как работают шины процессора. Их бывает две, одна, быстрая шина работает с кеш-памятью второго уровня, вторая шина (более медленная) предназначена для работы по обмену информации с другими устройствами.

Процессор — это главная микросхема компьютера. Как правило, она также является одним из самых высокотехнологичных и дорогих компонентов ПК. Несмотря на то что процессор — отдельное устройство, он имеет в своей структуре большое количество компонентов, отвечающих за конкретную функцию. Какова их специфика?

Процессор: функции устройства и история появления

Компонент ПК, который сейчас принято именовать центральным процессором, характеризуется достаточно интересной историей происхождения. Поэтому, для того чтобы понять его специфику, полезно будет исследовать некоторые ключевые факты об эволюции его разработки. Устройство, которое современному пользователю известно как центральный процессор, является результатом многолетнего совершенствования технологий производства вычислительных микросхем.

Со временем менялось видение инженерами структуры процессора. В ЭВМ первого и второго поколения соответствующие компоненты состояли из большого количества раздельных блоков, очень несхожих по решаемым задачам. Начиная с третьего поколения компьютеров функции процессора начали рассматриваться в более узком контексте. Инженеры-конструкторы ЭВМ определили, что это должно быть распознавание и интерпретация машинных команд, занесение их в регистры, а также управление другими аппаратными компонентами ПК. Все эти функции стали объединяться в одном устройстве.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Структура современных процессоров

Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?

Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.

Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.

Ядро процессора

Центральный процессор современного ПК всегда имеет ядро. В нем содержатся ключевые функциональные блоки микросхемы, посредством которых она выполняет необходимые логические и арифметические функции. Как правило, они представлены в некоторой совокупности элементов. Так, устройство центрального процессора чаще всего предполагает наличие блоков, которые отвечают за решение следующих задач:

Выборка и декодирование инструкций;

Выборка данных;

Выполнение инструкций;

Сохранение результатов вычислений;

Работа с прерываниями.

Также структура микросхем соответствующего типа дополняется управляющим блоком, запоминающим устройством, счетчиком команд, а также набором регистров. Рассмотрим специфику работы соответствующих компонентов подробнее.

Ядро процессора: компоненты

В числе ключевых блоков в ядре центрального процессора — тот, что отвечает за считывание инструкций, которые прописываются в адресе, зафиксированном в счетчике команд. Как правило, в течение одного такта выполняется сразу несколько операций соответствующего типа. Общее количество инструкций, подлежащих считыванию, предопределяется показателем в блоках декодирования. Главный принцип здесь — чтобы при каждом такте отмеченные компоненты были максимально загружены. С целью обеспечения соответствия данному критерию в структуре процессора могут присутствовать вспомогательные аппаратные элементы.

В блоке декодирования обрабатываются инструкции, определяющие алгоритм работы микросхемы в ходе решения тех или иных задач. Обеспечение их функционирования — сложная задача, как считают многие IT-специалисты. Это обусловлено, в частности, тем, что длина инструкции не всегда четко определена. Современные процессоры обычно включают 2 или 4 блока, в которых осуществляется соответствующее декодирование.

Касательно компонентов, отвечающих за выборку данных — их основная задача заключается в обеспечении приема команд из кэш-памяти либо ОЗУ, которые необходимы для обеспечения выполнения инструкций. В ядрах современных процессоров обычно присутствует несколько блоков соответствующего типа.

Управляющие компоненты, присутствующие в микросхеме, также базируются на декодированных инструкциях. Они призваны осуществлять контроль над работой блоков, которые ответственны за выполнение инструкций, а также распределять задачи между ними, контролировать своевременное их выполнение. Управляющие компоненты относятся к категории важнейших в структуре микропроцессоров.

В ядрах микросхем соответствующего типа присутствуют также блоки, отвечающие за корректное выполнение инструкций. В их структуре присутствуют такие элементы, как арифметическое и логическое устройство, а также компонент, отвечающий за вычисления с плавающей точкой.

Есть в составе ядер процессоров блоки, которые контролируют обработку расширения наборов, что установлены для инструкций. Данные алгоритмы, дополняющие основные команды, используются для повышения интенсивности обработки данных, осуществления процедур шифрования или дешифрования файлов. Решение подобных задач требует введения в структуру ядра микросхемы дополнительных регистров, а также наборов инструкций. Современные процессоры включают обычно следующие расширения: MMX (предназначены для кодирования аудио- и видеофайлов), SSE (применяются при распараллеливании вычислений), ATA (задействуется с целью ускорения работы программ и снижения уровня энергопотребления ПК), 3DNow (расширение мультимедийных возможностей компьютера), AES (шифрование данных), а также многие другие стандарты.

В структуре ядер процессора обычно также присутствуют блоки, отвечающие за сохранение результатов в ОЗУ в соответствии с адресом, который содержится в инструкции.

Важное значение имеет компонент ядра, который контролирует работу микросхемы с прерываниями. Данная функция позволяет процессору обеспечивать стабильность работы программ в условиях многозадачности.

Работа центрального процессора также связана с задействованием регистров. Данные компоненты являются аналогом ОЗУ, однако доступ к ним осуществляется в несколько раз быстрее. Объем соответствующего ресурса небольшой — как правило, он не превышает килобайта. Регистры классифицируются на несколько разновидностей. Это могут быть компоненты общего назначения, которые задействуются при выполнении арифметических или логических вычислений. Есть регистры специального назначения, которые могут включать системные данные, используемые процессором в ходе работы.

В структуре ядра процессора также присутствуют различные вспомогательные компоненты. Какие, например? Это может быть датчик, отслеживающий то, какова текущая температура центрального процессора. Если ее показатели выше установленных норм, то микросхема может направить сигнал модулям, отвечающим за работу вентиляторов — и они начнут вращаться быстрее. Есть в структуре ядра предсказатель переходов — компонент, который призван определять, какие именно команды будут выполняться после завершения определенных циклов операций, совершаемых микросхемой. Пример другого важного компонента — счетчик команд. Данный модуль фиксирует адрес соответствующего алгоритма, который передается микросхеме в момент начала выполнения им того или иного такта.

Такова структура ядра, которое входит в центральный процессор компьютера. Изучим теперь подробнее некоторые ключевые характеристики микросхем соответствующего типа. А именно: техпроцесс, тактовая частота, объем кэш-памяти, а также энергопотребление.

Характеристики процессора: тип техпроцесса

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Тактовая частота

Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора. Правда, его задействовать нужно осторожно.

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Объем кэш-памяти

Современные процессоры оснащены модулями кэш-памяти. Основное их предназначение — временное размещение данных, как правило, представленных совокупностью особых команд и алгоритмов — тех, что задействуются в работе микросхемы наиболее часто. Что это дает на практике? Прежде всего то, что загрузка центрального процессора может быть уменьшена за счет того, что те самые команды и алгоритмы будут находиться в оперативном доступе. Микросхема, получив из кэш-памяти готовые инструкции, не тратит время на их выработку с нуля. В итоге работа компьютера идет быстрее.

Главная характеристика кэш-памяти — объем. Чем он больше, тем, соответственно, вместительнее данный модуль с точки зрения расположения тех самых инструкций и алгоритмов, задействуемых процессором. Тем больше вероятность, что микросхема будет всякий раз находить среди них нужные для себя и работать быстрее. Кэш-память на современных процессорах делится чаще всего на три уровня. Первый работает на базе наиболее быстрых и высокотехнологичных микросхем, остальные — медленнее. Объем кэш-памяти первого уровня на современных процессорах составляет порядка 128-256 КБ, второго — 1-8 МБ, третьего — может превышать 20 МБ.

Энергопотребление

Другой значимый параметр микросхемы — энергопотребление. Питание центрального процессора может предполагать значительное расходование электроэнергии. Современные модели микросхем потребляют порядка 40-50 Вт. В некоторых случаях данный параметр имеет экономическое значение — например, если речь идет об оснащении больших предприятий несколькими сотнями или тысячами компьютеров. Но не менее значимым фактором энергопотребление выступает в части адаптации процессоров к использованию на мобильных устройствах — ноутбуках, планшетах, смартфонах. Чем соответствующий показатель меньше, тем дольше будет автономная работа девайса.

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор . И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле , дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов , открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние "0" или "1".

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – "silicium" в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования , а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа . Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы "–" касался p-стороны пластины, а "+" – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. "+" от источника к p-стороне, а "–" – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода .

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии .

Но, как только мы подключим еще один источник питания (назовем его V2), установив "+" контакт на «центральную» p-область (базу), а "–" контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

Выдыхаем!

4. Так как все-таки работает компьютер?

А теперь самое главное .

В зависимости от подаваемого напряжения, транзистор может быть либо открыт , либо закрыт . Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – "0".

При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или "1" в двоичной системе.

Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1 . Итак, мы определились с тем, что такое бит . Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом .

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов .

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы , в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор .

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

  • 1964 год IBM System/360. Компьютер, совместимый с универсальным программным кодом. Набор инструкций для одной модели процессора мог использоваться и для другой.
  • 70-e годы. Появление первых микропроцессоров. Однокристальный процессор от Intel. Intel 4004 – 10 мкм ТП, 2 300 транзисторов, 740 КГц.
  • 1973 год Intel 4040 и Intel 8008. 3 000 транзисторов, 740 КГц у Intel 4040 и 3 500 транзисторов при 500 кГц у Intel 8008.
  • 1974 год Intel 8080. 6 мкм ТП и 6000 транзисторов. Тактовая частота около 5 000 кГц. Именно этот процессор использовался в компьютере Altair-8800. Отечетсвенная копия Intel 8080 – процессор КР580ВМ80А, разработанный Киевским НИИ микроприборов. 8 бит.
  • 1976 год Intel 8080 . 3 мкм ТП и 6500 транзисторов. Тактовая частота 6 МГц. 8 бит.
  • 1976 год Zilog Z80. 3 мкм ТП и 8500 транзисторов. Тактовая частота до 8 МГц. 8 бит.
  • 1978 год Intel 8086 . 3 мкм ТП и 29 000 транзисторов. Тактовая частота около 25 МГц. Система команд x86, которая используется и сегодня. 16 бит.
  • 1980 год Intel 80186 . 3 мкм ТП и 134 000 транзисторов. Тактовая частота – до 25 МГц. 16 бит.
  • 1982 год Intel 80286. 1,5 мкм ТП и 134 000 транзисторов. Частота – до 12,5 МГц. 16 бит.
  • 1982 год Motorola 68000 . 3 мкм и 84 000 транзисторов. Этот процессор использовался в компьютере Apple Lisa.
  • 1985 год Intel 80386 . 1,5 мкм тп и 275 000 транзисторов.Частота – до 33 МГц в версии 386SX.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

  • кэш-памяти;
  • конвейера;
  • встроенного сопроцессора;
  • множителя.

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы . Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

  • SPARC;
  • ARM ;
  • PowerPC;
  • Intel P5;
  • AMD K5;
  • Intel P6.

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому - атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры . Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов . О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

  • сложность команд и откровенная их запутанность;
  • высокое потребление энергии и выделение теплоты.

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь - самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

  • мобильность;
  • автономность.

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

4.50 из 5, оценили: 24 )

сайт Большая статья, наливайте чай.
В продолжение темы:
Интересное

Как известно, лавры Северной Кореи не дают покоя украинскому президенту, который 16 мая подписал указ 133/2017 , вводящий в действие решение украинского СНБО (Совета по...

Новые статьи
/
Популярные